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Abstract 

 Brownian motion of a particle is characterized by the fluid 
producing simultaneous effects of drag tending to bring the particle to 
rest and a fluctuating force that keeps it in motion.  Einstein's diffusion 
equation for Brownian motion holds only for times larger than a 
minimum time 

! 

"  which is a measure of the time it takes for drag to 
dissipate a particle's initial speed.  This implies that the fluctuating 
force re-directs the motion of the particle for times approximately equal 
to 

! 

" .  This fact is used to derive an approximation for the dissipation 
time in a rare gas where individual molecular collisions are responsible 
for both drag and fluctuation, and leads to a transparent interpretation 
of the fluctuation-dissipation theorem. 

 
I.  INTRODUCTION 
 
 Brownian motion, the incessant motion of small particles suspended in a fluid, is 
readily observable for particles sufficiently small—most conveniently about a micron or 
so in diameter and invisible to the naked eye, but big enough to be seen in a microscope.  
 
 The discovery of Brownian motion is usually credited to botanist Robert Brown in 
1828.1 But as Edward Nelson pointed out,2 Brown himself credited others with observing 
it, the first recorded instance being by Leeuwenhoek over a hundred years earlier. Nelson 
recognizes Brown's historical primacy on the subject because his contribution was "… to 
establish Brownian motion as an important phenomenon, to demonstrate clearly its 
presence in inorganic as well as organic matter, and to refute by experiment facile 
mechanical explanations of the phenomenon."3 
 
 In 1905, Albert Einstein provided the first accurate explanation of Brownian 
motion4 by treating Brownian particles as large molecules executing thermal motions.  
Einstein predicted that 

! 

R2 , the average squared distance a particle diffuses from its 

starting point in three dimensions, is proportional to the time: 
 
      

! 

R2 = 6Dt ,    (1) 

 
where D is the diffusion constant.  He also showed that the diffusion constant of a 
Brownian particle (BP for short) of radius a in a fluid such as air or water of viscosity 

! 

" 
at temperature T is: 
 

     

! 

D =
kBT
"

=
kBT
6#$a

,    (2) 
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where kB = Boltzmann's constant and 

! 

" , in the well-known Langevin model (developed 
three years after Einstein's initial results), is the drag coefficient such that 

! 

" v is the drag 
force on a particle moving with velocity v through the fluid. Einstein's assumption for the 
viscous drag coefficient, 

! 

6"#a , was derived by Stokes more than fifty years earlier.5   
 
 One purpose of this paper is to review the reason why Eq. (1) must fail when the 
time between observations falls below a minimum value.  Einstein's derivation of the 
minimum time and its value for situations where Stokes friction applies will then be 
given.  The results of the review will then be used to derive the time scale in a low-
density gas for which the drag coefficient has a different form. The derivation will 
suggest a transparent re-phrasing of the fluctuation-dissipation theorem relating 

! 

"  to the 
fluctuating force that keeps the particle in motion.   
  
II.  MINIMUM TIME AND SPACE SCALES 
 
 Eq. (1) shows that the average squared displacement is proportional to t rather 
than t2.  This is because the path followed by a particle is assumed to be highly irregular, 
with the velocity changing rapidly and randomly.  But this assumption cannot hold 
without limit, as can be seen by considering the time and space scales over which the 
motion is observed, i.e., the time between repeated observations and the displacements of 
the particle between those times.  If the irregular nature extended down to arbitrarily 
small time and space scales, the particle would have to travel at an infinite speed to get 
anywhere, as discussed recently by J. Bernstein.6  Expanding a bit on Bernstein's 

argument, let 

! 

R2  be a measure of the average displacement in the time between 

consecutive observations, 

! 

tob .  Then the speed the particle must travel if it went along the 

straight-line segment connecting the points of observation is 

! 

v = R2 / tob = 2D / tob .  

Taking D as a finite observed quantity, the expression for v shows that the straight-line 
speed must increase without limit as the time between observations decreases without 
limit.  Put differently, if the path were jagged down to arbitrarily small space scales, then 
the actual distance the BP must travel between finitely-spaced endpoints would be 
infinite, which requires an infinite speed if the path is to be traversed in a finite time.7 
 
 The pathological "infinite speed" property of Eq. (1) was recognized by Einstein,8 
by Jean Perrin9 in his Nobel Prize-winning work that verified Einstein's work, and by 
many others.  As Einstein recognized early on, the particle must really travel with a speed 
determined by the well-known equipartition rule, which says that the total kinetic energy 
(in three dimensions) is 

! 

3kBT /2 .   For a particle of mass M, this yields the root-mean-
square thermal speed of: 
 
      

! 

vM = 3kBT /M .      (3)  
 
The finite particle speed implies that there exist minimum time and space scales below 
which the particle motions loses its jagged character and Eq. (1) ceases to hold.  This is 
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shown in Figure 1(a), which is a conceptual illustration of the continuous smooth path 
that would be observed if the particle could be tracked at a very small time scale.  The 
solid line Figure 1(b) is typical of the type of path observed by Perrin,10 who made 
observations at very large time scales of the order of 30 seconds.  The smooth, almost 
straight-line motion at very small scales is known as "ballistic" Brownian motion,11 and 
illustrates Nelson's statement that Brownian motion is "unbelievably gentle."12 This is a 
useful antidote to the idea that individual molecular impacts determine the roughness of a 
Brownian trajectory,13 because typically, a huge number of molecular collisions must 
occur during the time it takes for the direction of travel of the BP to substantially 
change.14 
 
 Einstein15 estimated the minimum time scale for a particle of mass M by 
considering the time dependence of the velocity of a particle coasting under the influence 
of a Stokes drag force but in the absence of thermal agitation.  The simple differential 
equation describing the motion, 

! 

Mdv /dt = "#v, yields 

! 

v = voe
"t /# , where the minimum 

time scale is: 
 

     

! 

" =
M
#

.    (4) 

 
The minimum time scale 

! 

"  is also referred to as the relaxation or dissipation time, 
because it is the time needed for an initial velocity to be dissipated by friction.  In what 
follows, it will be referred to as the dissipation time. 
 
 The space scale associated with 

! 

"  is easily obtained by integrating the equation 
for velocity and setting the time to 

! 

" , which yields:   
 
      

! 

" = vo#(1$1/e) % vo# .     (5) 
 
Since irregularity in the particle's path appears for times greater than 

! 

" , 

! 

"  is a lower limit 
on the time needed for the random fluctuating force that keeps the particle in motion to 
have a significant effect on the direction of motion, because it is this random force that 
gives rise to the jaggedness of the path.  This interpretation of the meaning of 

! 

"  will be 
used explicitly in Section III.  
 
 It is instructive to determine the magnitudes of 

! 

"  and 

! 

"  for air and water, using 
Eqs. (4) and (5).  In thermal equilibrium, we can take 

! 

vo  in Eq. (5) to be the root-mean-
square average speed 

! 

vM  given in Eq. (3).   For a typical Brownian particle which has a 
radius of 10-6 m and a density approximately equal to that of water, its mass is M = 
4.2x10-15 kg and its thermal speed for T = 300 K is 

! 

vM  = 0.00172 m/s. Therefore, in 
water with viscosity 0.001 kg/ms, Stokes drag is appropriate so 

! 

" = 6#$a =1.885x10-8 
kg/s, which gives 

! 

"  =2.23x10-7 s and 

! 

"  = 3.84x10-10 m. The lower limit for 

! 

"  is only 
about seven times the radius of a hydrogen atom!  For air (

! 

" = 1.81x10-5 kg/ms) at 
standard temperature and pressure, Stokes friction is also appropriate,16 and we get 

! 

"  = 
1.23x10-5 s and 

! 

"  = 2.12x10-8 m.  Clearly, there was no way Perrin could have observed 
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smooth Brownian paths on a scale below 

! 

"  and 

! 

" , since he was tracking them visually. 
 
 The tiny value of 

! 

"  for water deserves comment.  The usual form of Stokes drag 
assumes that the particle does not undergo rapid oscillatory-type accelerations,17 but with 
such small values of 

! 

"  and 

! 

" , this is a questionable assumption.  Stokes also presented a 
lesser-known form appropriate for oscillatory motion,18 and the implications have been 
investigated by D. Selmeczia, et al.  for application to microparticles subject to optical 
tweezers.19  The correction for acceleration in most cases is small and can be ignored.  
Other recent research involves the inertial effects of the liquid around the particle.20  So 
although many consider Brownian motion is to be a settled subject, it is still an active 
field of investigation. 
 
III.  DERIVATION OF THE DISSIPATION TIME FROM FLUCTUATIONS 
 
 The Stokes drag coefficient in Eq. (1) is appropriate when the molecular mean free 
path, 

! 

" , is much smaller than a in which case the laws of continuous fluid mechanics 
apply.21  For a micron-size BP, Stokes friction holds very well in water.  It holds 
adequately in air, but for precise work, corrections are necessary.22  In the opposite case 
where 

! 

"  >> a, 

! 

"  can be described in terms of individual collisions of molecules with the 
particle.23 
 
 The vast majority of papers on Brownian motion refer to molecular collisions as 
the essential causative agent, but strictly speaking, this is correct only for rare gases.  In 
denser fluids, where Stokes friction holds, collisions are not strictly local, because 
collision of a molecule with the BP surface exerts an effect that depends on what other 
molecules are doing.  For example, a molecule about to impinge on the BP might be 
subject to the pressure distributed throughout a fluid element of which it is a part.  Also, 
viscosity, which describes the drag on a BP in the most common media of air and water, 
is not local because it involves the velocity correlation between molecules in fluid 
elements adjacent to and at rest on the BP surface (in the commonly used "no slip" 
condition) and molecules in fluid elements farther away from the surface. In liquids and 
sufficiently dense gases, this correlation is described not just by boundary conditions, but 
also by intermolecular forces.24 Of course, rare gases have viscosity too, but the drag 
effect is described by individual collisions, not the Stokes law.  As we shall see, the 
collision drag force depends on a2, unlike the Stokes drag's linear dependence on a. 
 
 To simplify the following discussion, consider a BP in a gas sufficiently rarified 
that 

! 

">> a, so its behavior is determined through the mechanism of molecular collisions.  
(Denser fluids like water or air at standard temperature and pressure are more difficult to 
deal with.)  We will now determine the correct functional form of the dissipation time by 
first determining the fluctuation in the number of collisions of molecules with the BP in 
an arbitrary time interval t, and then finding the value of t that produces a momentum 
change in the BP equal to its equilibrium momentum.  This will lead to an interpretation 
of the fluctuation-dissipation relating the drag coefficient 

! 

"  to the random fluctuating 
force responsible for Brownian motion. 
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 Simple kinetic theory tells us that the number of collisions per unit area per unit 

time is 

! 

fcoll,1 = nv m /4 , where 

! 

v m =
8kBT
"m

 is the average molecular speed.  Therefore, 

in time t, the average number of collisions on each side of the Brownian particle is 
approximately: 
 
      

! 

ncoll,t " fcoll,1# a
2t ,      (9) 

 
where the effective collision area of the particle is approximated as 

! 

" a2 .  The average 
fluctuation in the imbalance in the number of collisions is 

! 

"ncoll, t = ncoll,t , and each 
unbalanced collision (for simplicity, assumed elastic) produces a momentum change 

! 

"p1 # 2mv m .  Substituting for 

! 

ncoll,"  and 

! 

fcoll,1, we get for the total change in particle 
momentum in time t: 
 
    

! 

"p t = "p1#ncoll,t = 2mv m ( fcoll,1$ a2t)1/2.  (10) 
 
From what was said following Eq. (5), the accumulated imbalance in a time equal to the 
dissipation time 

! 

"  should lead to a significant change in direction of motion of the 
particle, i.e., the momentum change should be 

! 

"p # MvM = 3MkBT .   Substituting for 

! 

v m  and 

! 

fcoll,1 in Eq. (10), setting the result equal to 

! 

3MkBT  and solving for 

! 

t " # , we 
obtain:   
 

     

! 

" =
M
#
$

M
a2n 8%mkBT

.   (11) 

 
As promised, the implied value of 

! 

"  in Eq. (11) is proportional to a2, unlike the Stokes 

! 

"  which is proportional to a.  This is a reflection of the physical difference between the 
two types of drag, one being entirely local in nature and the other being non-local.   
 
 Epstein25 gives the precise value 

! 

" = [4a2n 8#mkBT ]/3 , i.e., 

! 

" = 0.750M / a2n 8#mkBT[ ] .  So the value in Eq. (11) is only about 33% above the 
correct value. 
 
 The conventional way of stating the fluctuation-dissipation theorem is to relate 
the friction constant 

! 

"  to the expectation value of the time correlation function of the 
fluctuating force.26 Eq. (11) is based on the relationship between fluctuations and drag, 
and offers a more transparent interpretation of the fluctuation-dissipation theorem for 
Brownian motion: 
 

The time it takes for friction to dissipate the particle's original thermal 
speed is equivalent to the time it takes for the fluctuating force to re-
establish the thermal speed in a different random direction. 
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 It is interesting to imagine what would happen if this theorem were not true.  
Consider an ensemble of BPs each with mass M, in a fluid at temperature T.  Assume that 
each particle in the ensemble is initially traveling with exactly the thermal speed, but 
particle velocities are in random directions.  If the time to dissipate a particle's original 
thermal velocity were on average greater than the time needed for the fluctuating 
impulses to change a particle's velocity by an amount equal to the thermal speed but in a 
random direction, then a particle on average would still have what's left of its original 
velocity and so the average speed would increase without bound.  If the dissipation time 
were less than the time it takes fluctuating impulses to change a particle's velocity by an 
amount equal to its thermal speed, then the particle would spend too much time with a 
speed below the thermal average before impulses could boost it back to the thermal 
speed, and the average speed would fall below the level of the thermal average.  So the 
fluctuation-dissipation theorem is required so that the average particle speed stays at the 
thermal average at constant temperature. 
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